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The linear regression-based reliable change index (RCI) is widely used to identify memory impairments
through longitudinal assessment. However, the minimum sample size required for estimates to be reliable
has never been specified. Using data from 920 participants from the Alzheimer’s Disease Neuroimaging
Initiative data as true parameters, we run 12,000 simulations for samples of size 10–1,000 and analyzed the
percentage of times the estimates are significant, their coverage rate, and the accuracy of the models
including both the true-positive rate and the true-negative rate. We compared the linear RCI with a logistic
RCI for discrete, bounded scores. We found that the logistic RCI is more accurate than the linear RCI
overall, with the linear RCI approximating the logistic RCI for samples of size 200 or greater.We provide an
R package to compute the logistic RCI, which can be downloaded from the Comprehensive R Archive
Network (CRAN) at https://cran.r-project.org/web/packages/LogisticRCI/, and the code to reproduce all
results in this article at https://github.com/rafamoral/LogisticRCIpaper/.

Public Significance Statement
This simulation shows the accuracy of the linear regression-based reliable change index (RCI) to
identify longitudinal decline and provides an R package to calculate reliable change with both the linear
regression and an alternative logistic RCI for clinicians and researchers. Our simulations showed that the
linear and the logistic models approximate with samples of size 200 or above, with the logistic model
outperforming the linear model for smaller samples.
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Standard verbal memory tests are essential in the neuropsycho-
logical assessment of memory functioning and are necessary to
capture memory impairments in people with mild cognitive
impairment (MCI) due to Alzheimer’s disease (AD) who are at a
greater risk of developing AD (Albert et al., 2011; Winblad et al.,
2004). In the standard assessment of memory functioning, indivi-
duals are administered a verbal memory task and raw scores are
compared against normative data obtained from a reference group
(Strauss et al., 2006). However, performance on verbal memory tests
can be interpreted using statistical techniques derived for serial
assessment. These techniques, encompassed under the term
reliable change index (RCI; Duff, 2012), were developed to identify
change in longitudinal assessment that exceeds normal variability
(Hinton-Bayre, 2011; McSweeny et al., 1993). Among several RCI
methods that are available for the interpretation of significant change
(Calamia et al., 2012; Duff, 2012), one of the most statistically
developed technique is the standard regression-based RCI (RCIRB).
With the RCIRB, a comparison group is used to predict scores on the
second assessment using scores on the first assessment (McSweeny
et al., 1993). In order to interpret whether reliable change has
occurred, observed scores at the second assessment are subtracted
from the expected scores based on the regression equation, and the
discrepancy is standardized using the standard error of the regres-
sion equation (SEE).
The RCIRB has been applied to analyze memory impairments in

different samples, including high school athletes (Brett et al., 2016),
patients with epilepsy (Busch et al., 2015), traumatic brain injury
(Metcalf et al., 2019), migraine (Roebuck-Spencer et al., 2007),
cancer (Ouimet et al., 2009), human immunodeficiency virus (HIV;
Cysique et al., 2011), cardiac surgery (Sweet et al., 2008),
schizophrenia (Roseberry & Kristian Hill, 2014) or psychosis
(Sánchez-Torres et al., 2018), dementia (O’Connell et al., 2019)
or MCI (Campos-Magdaleno et al., 2017; Duff et al., 2017), older
adults with total joint replacement (Scott et al., 2017), as well as
healthy individuals of different ages (Bouman et al., 2015;
Crockford et al., 2018; Elbin et al., 2019; Frerichs & Tuokko,
2006; Gavett et al., 2015; Gonçalves et al., 2016; Raymond et al.,
2006b; Salinsky et al., 2001; Schatz & Ferris, 2013; Temkin et al.,
1999; Van der Elst et al., 2008), and nondemented older adults
(Duff, 2014; Sánchez-Benavides et al., 2016).
As with any other statistical technique, assumptions about

linear regression analyses must be met for the regression equation
to be accurate. Assumptions of regression analysis are that the
residuals (differences between obtained and predicted scores on
the dependent variable [DV]) are normally distributed around the
predicted DV scores, are independent for each value of the predictor
(Tabachnick & Fidell, 2013), and that the variance of the residuals is
the same for all values of the predictors, especially for small sample
sizes (Williams et al., 2013). Following the Gauss–Markov theorem,
even when residuals are not normally distributed, ordinary least
squares parametric estimates are the best linear unbiased estimates
(Williams et al., 2013). The violation of the assumption about
normality of residuals affects significance tests and confidence

interval of regression coefficients, even if they are still unbiased
(Williams et al., 2013). This means that regression coefficients close
to the real parameter might go undetected (increasing the false-
negative rate [FNR]) if confidence intervals are too large (i.e.,
include the 0), or that regression coefficients that deviate from
the real parameter might reach statistical significance (increasing
the false-positive rate), especially in small samples (Williams
et al., 2013).

Heterogeneity in sample sizes is quite large in studies using the
RCIRB. Although most of the studies reported sample sizes equal or
lower than 200 (Bouman et al., 2015; Busch et al., 2015; Campos-
Magdaleno et al., 2017; Crockford et al., 2018; Cysique et al., 2011;
Duff, 2014; Duff et al., 2010; Elbin et al., 2019; Frerichs & Tuokko,
2006; Gonçalves et al., 2016; Hermann et al., 1996; Kashyap et al.,
2014; Martin et al., 2002, 2006; Meekes et al., 2013, 2014;
Raymond et al., 2006a, 2006b; Salinsky et al., 2001; Sánchez-
Benavides et al., 2016; Sánchez-Torres et al., 2018; Scott et al.,
2017; Sweet et al., 2008; Temkin et al., 1999; Womble et al., 2016),
some reported samples larger than 500 (Brett et al., 2016; Gavett
et al., 2015; Tombaugh, 2005; Van der Elst et al., 2008) or lower
than 30 (Metcalf et al., 2019; Nakhutina et al., 2010; Ouimet et al.,
2009; Roebuck-Spencer et al., 2007; Roseberry & Kristian Hill,
2014; Schatz & Ferris, 2013; Sherman et al., 2003). However,
residuals have barely been tested or plotted, and thus the probability
of using unreliable estimates is unknown.

Previous studies have analyzed, through Monte Carlo simula-
tions, the Type I error rate (i.e., wrongly concluding that the
patient has a deficit) associated with several reliable change methods
for different sample sizes. Crawford and Garthwaite (2012) showed
that the Type I error rate when using z-scores obtained from means
and standard deviations doubled the nominal rate for small samples
and approximated the expected 5% (one-tailed) for samples of size
50 and above. When reliable change was calculated with the RCIRB,
Crawford and Garthwaite (2006) showed that the Type I error rate
varied with different test–retest correlation and different sample
sizes and showed that using the standard error for a new case
maintained the error rate close to 5%. However, neither the Type II
error rate nor the influence of other covariates in the regression
model were analyzed.

Additionally, one of the methodological topics that to our
knowledge has never been analyzed is the use of statistical methods
according to the nature of the data. The RCIRB is calculated using a
linear regression model, which is intended to be used with continu-
ous data. However, if the RCIRB is to be used to identify reliable
memory decline, then scores obtained on memory tests will be used.
The scores obtained on memory tests are discrete rather than
continuous (e.g., it is not possible to recall 1.5 items) and are
bounded between lower (typically 0) and upper (maximum number
of items) possible values. For example, the Rey’s Auditory Verbal
Learning Test (AVLT; Rey, 1964) includes 15 words, and thus
performance is bounded between 0 and 15. The linear regression
model assumes that the response is continuous and unbounded,
therefore not being the most suitable approach for this type of
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analysis. Binomial generalized linear models (GLMs; McCullagh &
Nelder, 1989), however, do accommodate the discrete and bounded
nature of a response variable and therefore represent a more suitable
alternative to linear regression.
The aim of the present work was to analyze the sample size

needed to increase the number of true positives and to reduce the
number of false negatives to a minimum, in order to identify
correctly individuals with objective longitudinal memory decline
using the RCIRB. As a further step, we provide the LogisticRCI R
package with an alternative method to model cognitive scores when
analyzing reliable change with discrete, bounded scores from
memory tests.

Method

Data were obtained from the Alzheimer’s Disease Neuroimaging
Initiative (ADNI) database (adni.loni.usc.edu), launched in 2003 as
a public–private partnership, led by Principal Investigator Michael
W. Weiner, MD. The first ADNI period (ADNI1) was updated in
the ADNIGO and ADNI2 grant periods. Information about mag-
netic resonance imaging, positron emission tomography, other
biological markers, and clinical and neuropsychological assessment
are available for more than 1,000 normal controls, individuals with
MCI, and individuals with mild dementia (Petersen et al., 2010;
www.adni-info.org). The ethical committee at each participating site
approved the project. All ADNI participants provided written
consent. All participants received physical and neurological exam-
inations, screening laboratory tests, and provided blood samples for
deoxyribonucleic acid (DNA) and Apolipoprotein E testing. We
used data from 920 participants across 1,840 visits. Four hundred
fifty participants were labeled as cognitively normal and 470 as
having MCI at baseline. Cognitively normal participants had no
memory complaints, Clinical Dementia Rating (Hughes et al., 1982)
scale = 0, Mini-Mental State Examination (MMSE; Folstein et al.,
1975) scores ≥ 24, normal education-corrected Logical Memory
subtest scores, and no significant impairments in activities of daily
living. Participants with MCI met Petersen et al.’s (1999) criteria:
They had memory complaints, Clinical Dementia Rating (Hughes et
al., 1982) scale = 0.5, MMSE (Folstein et al., 1975) scores ≥ 24,
education-corrected Logical Memory subtest scores equal or lower
than 1.5 SDs below the mean of a normative sample, no significant
impairments in activities of daily living, and did not meet criteria for
dementia.
Differences between groups on demographics and cognitive

variables were analyzed with χ2 and independent t tests. Cohen’s
dwas calculated as a measure of effect size for continuous variables,
with values of .20, .50, and .80 indicating a small, medium, and large
effect size, respectively (Cohen, 1992). Test–retest reliability was
calculated with the Pearson correlation coefficient, with values of
.10, .30, and .50 indicating small, medium, and large associations,
respectively (Cohen, 1992).

Linear Regression-Based RCI

Let Yi be the random variable representing the score obtained by
individual i, i = 1, : : : , n. We begin by assuming the distribution of
Yi is normal with mean μi and variance σ2, with μi= xTi β, where xTi is
the i-th row of the design matrix and β is the vector of regression

coefficients. This is a standard multiple linear regression model,

with β̂ = ðXTXÞ−1XTy and σ̂2 = ðy−Xβ̂ÞT ðy−Xβ̂Þ
n−p the well-known least

squares estimators for β and σ2, respectively, where p is the
dimension of the β vector. Crawford and Garthwaite (2007) refer
to σ̂ as the SEE. The linear regression-based RCI (linear RCI) is
given by

Linear RCI =
yi − μ̂i

σ̂
, (1)

where μ̂i = xTi β̂ is the predicted mean score for each individual
(Crawford & Garthwaite, 2007). Assuming the model is well fitted,
the residuals are meant to follow a normal distribution. Since the
linear RCI is a standardized version of the raw residuals, for a well-
fitted model, it is assumed to follow a standard normal distribution.
Therefore, values that fall in the lower tail of the distribution are
assumed to represent reliable decline. In this work, we used the fifth
percentile (one-tailed) of the standard normal distribution (i.e., z-
score ≤ −1.64) as a threshold to detect reliable decline (Crawford &
Garthwaite, 2007). The effects of the terms in the model were
assessed via F tests.

Logistic Regression-Based RCI

The response variable in this study, the Auditory Verbal Learning
Test Delayed Recall score (AVLT-DR; Rey, 1964), is a discrete
score that is bounded between 0 and 15 that reflects the number
of items correctly recalled following a 20 min delay. Therefore, its
nature is of a discrete proportion, and a sensible modeling approach
would involve binomial GLMs and extensions. Here, we propose a
new RCI based on logistic regression: A binomial GLM with a
logit link. Let Yi be the random variable representing the number of
items correctly recalled by individual i. We may assume that the
distribution of Yi is binomial (mi, πi), where mi = 15 is the
denominator of the distribution and πi is the probability of an
item being recalled for individual i. We model πi as a function of
different predictors, in the logit (or log-odds) scale, that is,

log

�
πi

1 − πi

�
= ηi = xTi β, (2)

where xTi is the i-th row of the design matrix and β is the vector
of regression coefficients. Typically, the design matrix includes an
intercept and the effects of baseline score and may also include other
covariates such as age, gender, and education level. By fitting a
logistic regression model, we are able to estimate the regression

coefficients and the linear predictor ηi = xTi β̂ . Consequently, the
probability of a question being correct would be represented as

π̂i = eη̂i
1+eη̂i :

The logistic regression-based RCI (logistic RCI) is based on the
Anscombe residuals for GLMs, combined with the correction
proposed by Cox and Snell (1968) to stabilize the asymptotic
variance of their distribution. We may write it as

Logistic RCI =
ffiffiffiffiffi
mi

p δ
�
yi
mi

�
− δ

�bπi − 1−2bπi
6mi

�
fbπið1 − bπiÞg−1

6

, (3)
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where δðxÞ = ∫ x

0
ftð1 − tÞg−1

3dt is the incomplete beta function.
Asymptotically, the logistic RCI has a normal distribution with
mean zero and variance that depends on πi. We may standardize it to
obtain z-scores by dividing the logistic RCI by its observed standard
deviation, therefore yielding an asymptotic N(0, 1) distribution.
Again, we used the fifth percentile of the standard normal distribu-
tion as a threshold to detect reliable decline (i.e., z-score ≤ −1.64).
Since both linear and logistic regression are GLMs, the assump-

tion of linearity at the linear predictor scale applies to both methods.
Because for linear regression we typically use the canonical identity
link, this translates directly into linearity between the independent
and dependent variables. For logistic regression, we now assume
linearity in the logit scale. We fit the binomial GLMs allowing Var
(Yi) = ϕmiπi (1–πi), and estimated ϕ via a quasi-likelihood approach
using the Pearson residuals, thus allowing for a more flexible
variance function that accommodates extra variability, should
that be present in the data. Finally, we assessed the significance
of the model effects using F tests, since the dispersion parameter ϕ
had been estimated.

Simulation Study

We began by fitting a linear and a logistic regression model to the
ADNI data set including baseline score, age, education, and gender
in the linear predictor and treated the estimated parameters as the
true population parameters. Then, we simulated a population of 1
million individuals based on these estimated parameters and pre-
defined distributions for baseline score, age, education, and gender
that are similar to the ones observed in the ADNI data set. After that,
we drew 1,000 samples of sizes 10, 20, 30, 40, 50, 100, 150, 200,
250, 500, 750, and 1,000 from the simulated data set (a total of
12,000 simulated samples), refitted the linear and logistic regression
models to each sample, and calculated the linear and the logistic
RCI. We then identified individuals with z-score ≤ −1.64 as
showing reliable decline. Individuals were labeled as true positives
if they showed a discrepancy between observed and predicted scores
equal or lower than−1.64 both in the simulated data set and for each
sample of different sizes. Individuals showing reliable decline in the
simulated data set but not for the smaller sample sizes were labeled
as false negatives.
To assess model overall goodness of fit, we produced half-normal

plots with a simulated envelope for the studentised residuals for the
linear RCI and deviance residuals for the logistic RCI. This was
obtained by plotting the ordered absolute values of the residuals
versus the expected order statistics of a half-normal distribution
(Moral et al., 2017). By simulating data from the fitted models,
refitting the models and obtaining the ordered absolute values of the
residuals, we could obtain an envelope by computing the 97.5th and
2.5th percentile for each order statistics. The envelope was such that
for a well-fitting model, we would expected most points to lie within
it. We assessed the normality of the linear RCI and the logistic RCI
by producing the half-normal plot with a simulated envelope and
counting the number of points that fell outside of the envelope (the
more points that fall outside, the bigger the departure from
normality).
Finally, we assessed (a) the significance of the effects in the linear

predictor, (b) the normality of the RCIRB (based on the half-normal
plot with a simulation envelope; Moral et al., 2017), (c) the
percentage of points outside the envelope of the half-normal plot

of the residuals (as a measure of overall goodness of fit), (d) the
percentage coverage of the 90%, 95%, and 99% confidence intervals
for each true parameter value, and (e) the accuracy (true-positive
rates [TPR] and true-negative rates [TNR]) for detecting reliable
decline at different thresholds.

For the logistic RCI, the baseline scores were simulated from a
β(1.59, 1.36) distribution. This distribution was obtained by fitting
a beta model to 15 minus the baseline scores observed in the ADNI
data set, and scaling them to be between 0 and 1. The age variable
was simulated from a N(73.41, 46.78) distribution, which was
obtained by fitting a normal model to the observed ages in the
ADNI data set. The gender variable was simulated from a Bernoulli
(0.5) distribution, so that approximately half of the individuals
were male and half female. Finally, the education level variable
was simulated from a discrete uniform distribution, ranging from 4
to 20, the range of the education variable in the ADNI data set.
Although the education variable in the ADNI data set is skewed
toward higher levels, we opted to represent all education levels
equally in the large simulated data set. All simulations and visua-
lizations were produced using R (R Core Team, 2021), and all
associated code is made available at https://github.com/rafamoral/
LogisticRCIpaper. Data used for the simulations can be accessed at
www.adni-info.org. This work was not preregistered, but a preprint
version of this article can be found at https://psyarxiv.com/gq7az.

Results

Descriptive statistics of the sample used for the simulation can be
found in Table 1. Compared to the MCI group, the normal control
group had a higher percentage of males (58.7% vs. 48.9%, p= .003),
was slightly older (p < .001), had a higher level of education (p =
.018), and had higher MMSE (p < .001), baseline AVLT-DR (p <
.001), and follow-up AVLT-DR (p < .001) scores. Effect sizes were
negligible for education, small for age, and medium to large for
MMSE and AVLT scores. According to the guidelines reported by
Strauss et al. (2006), the test–retest coefficient for the AVLT-DR
scores was adequate (r = .71, 95% CI = [.68, .74]).

Simulation Study

The estimated parameters treated as the true population parame-
ters for simulations are shown in Table 2. Looking at the percentage
of times, the F test was significant for each effect (see Figure 1),
linear and logistic models yielded very similar results. For the
baseline score, even with a sample size as small as 20, we already
observed significance (associated p value less than .05) for 100% of
the samples. The effect of baseline score, which was the slope of the
curve, was the largest in magnitude (see Table 2), and therefore
even with a small sample size, it was not difficult to obtain a
significant estimate. Education, however, was of a smaller magni-
tude and significance was attained for 100% of samples of size 150
or larger.When looking at the effects of age and gender, it seems that
it was very difficult for the method to obtain significant estimates,
even with a sample as large as 1,000, especially for the effect of
gender.

When studying the coverage of the 90%, 95%, and 99% confi-
dence intervals (Figure S1), again we observed very similar results
between the linear and logistic models. The coverage for the
intercept, baseline, and age effects was very close to the nominal
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coverage rate for samples as small as 30. For the gender effect,
coverage was systematically above the nominal rate. This is
because the gender effect is typically associated with a large
standard error, and therefore the confidence intervals are inflated.
The education level effect, on the other hand, presented coverage
systematically below the nominal rate, although very close to it.
This is because not only did education have a small numerical
effect but also the continuous education covariate had to be
discretized, which makes it more difficult to estimate its effect
and the uncertainty around the estimate. Consequently, the confi-
dence intervals were slightly narrower than what they should have
been to provide the nominal coverage rate. The distribution of the
linear and logistic RCIRB was considered to be normal for most
simulated data sets, at very similar rates, based on the half-normal
plot with a simulated envelope (Figure S2). Model goodness of fit,
however, was systematically better for the logistic model when
compared to the linear model, although as discussed above,
inferential power seemed to be very similar for both modeling
approaches. As can be seen, there was a higher percentage of points
outside of the envelope (>20%) for sample sizes above 25. For
instance, we observed 47% of points outside of the envelope for the
linear regression and 18% for the logistic regression at the largest
sample size of 1,000. This means that the distribution of the
residuals indicated that the models did not fit the data well,
according to the half-normal plot with a simulated envelope.
This was expected because as the sample size increases, the
envelope bands become narrower when close to zero and

depending on the simulated sample, many points will be outside
the envelope bands in that region, increasing the overall average.
However, most samples presented a satisfactory fit for the logistic
regression model (a median of 9% for the logistic compared to 49%
for the linear at a sample of size 1,000, with much lower values for
smaller sample sizes). This indicates that the logistic regression is a
suitable alternative to analyze this type of data.

When attempting to identify reliable change, the TPR for the
logistic RCI were systematically greater than the TPR for the linear
RCI for smaller sample sizes (200 or less, see Figure 2, top left
panel). The TNR, however, were very similar for both approaches
and close to 100%, although the TNR for the linear RCI was slightly
lower. It became clear that the overall accuracy (bottom panels of
Figure 2) was dictated by the TPR in this case, and the logistic
RCI presented better performance overall regardless of the threshold
chosen. We would like to highlight that the normality of the RCI is
based on an approximation, both for the linear and logistic RCI. As
the sample size increases, this approximation becomes more evident
and the departure from normality is clearer. However, this is not a
problem in terms of true-/false-positive rates for detecting reliable
decline, especially if different thresholds are used depending on the
objectives of the study.

In order to analyze whether the results might be biased because
of including both cognitively normal and participants with MCI
in the sample used to obtain the estimates for the simulations, we
reran the analyses including diagnosis as a covariate both for the
linear and logistic regression models and found that (a) diagnosis
was a significant covariate for both models; (b) when the linear
predictor includes diagnosis, fewer individuals with MCI pre-
sented RCI < −1.64 when compared to the model where diagno-
sis was not included as a covariate; and (c) when diagnosis was
not included as a covariate, the mean RCI for individuals with
MCI was smaller than the mean RCI for individuals in the control
group. This was all expected, since when we include diagnosis as
a covariate, we are effectively fitting lines with different inter-
cepts (one for control, another for MCI). Since the RCI depends
on the residuals, because we correct for diagnosis, the RCI for
both groups will be smaller in magnitude (closer to zero), and
therefore fewer individuals will be identified as showing reliable
decline.
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Table 1
Descriptive Statistics

Variable

95% confidence interval
95% confidence

interval

Group M Lower Upper SD Min. Max. Cohen’s d Lower Upper

Age NC 74.26 73.72 74.80 5.86 56.2 90.1
MCI 72.60 71.92 73.29 7.59 55.0 91.4 0.24 0.11 0.37

Education NC 16.43 16.18 16.68 2.73 6 20
MCI 16.00 15.75 16.25 2.78 4 20 0.16 0.03 0.28

MMSE NC 29.07 28.97 29.17 1.12 24 30
MCI 28.01 27.86 28.17 1.68 24 30 0.74 0.59 0.87

Baseline AVLT-DR NC 8.01 7.68 8.34 3.57 1 15
MCI 5.86 5.53 6.19 3.64 1 15 0.59 0.46 0.73

Follow-up AVLT-DR NC 7.15 6.82 7.48 3.53 1 15
MCI 5.10 4.78 5.43 3.57 1 15 0.58 0.40 0.71

Note. NC= normal control group;MCI=mild cognitive impairment; MMSE=Mini-Mental State Examination; AVLT-DR=Auditory Verbal Learning Test
Delayed Recall score.

Table 2
Parameter Values Estimated From the ADNI Data Set From a
Linear Regression Model and a Logistic Regression Model

Parameter
Linear regression

estimate
Logistic regression

estimate

Intercept 2.3102 −1.5782
Baseline score 0.6726 0.2010
Age −0.0285 −0.0087
Education level 0.0686 0.0224
Gender—female 0.2837 0.0894

Note. ADNI = Alzheimer’s Disease Neuroimaging Initiative.
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Discussion

The present work aimed to analyze the sample size needed to
obtain reliable estimates when assessing memory decline with the
standard linear RCI. Additionally, we analyzed through simulation
whether the identification of reliable decline was as accurate (true
positives and true negatives) when using a linear model as when
using a logistic model. We used the AVLT-DR scores, because
delayed recall scores are believed to reflect the memory consolida-
tion processes that occur within the hippocampus to a larger extent
than immediate recall (Belleville et al., 2017), has good to excellent
psychometric properties to discriminate patients with AD and
healthy controls (Cerami et al., 2017), and has good predictive
power to identify cognitive decline in healthy older adults (Wearn
et al., 2020), and to identify individuals at a higher risk of progression
from MCI to AD (Cerami et al., 2017; Fleisher et al., 2007). The
simulation showed that both models give similar results for samples
sizes of 200 or greater, with the logistic RCI presenting better
performance with smaller sample sizes.
The main implications raise when evaluating the accuracy in

terms of sensitivity (detection of true positives) and specificity
(detection of true negatives). For samples smaller than 200, which
are quite frequent in the literature of clinical research in older adults
and dementia, the TPR for the logistic RCI are systematically greater
than the TPR for the linear RCI, whereas the TNR for the linear RCI
are only slightly lower. In other words, this implies that traditionally
estimated linear RCI has higher rates of both false positives (in-
dividuals incorrectly identified as having reliable decline) and false
negatives (individuals incorrectly identified as not having reliable
decline). For the subject of false positives, Klekociuk et al. (2014)

stated that the rate of recovery observed in MCI indicates that
existing MCI diagnostic criteria comprises an unacceptably high
rate of false-positive diagnoses and lacks adequate sensitivity and
specificity. Edmonds et al. (2015) reported similar concerns as their
results showed that a significant proportion of individuals in the
ADNI/MCI sample are cognitively normal if more detailed testing is
taken into account, and that a subset of individuals from the cluster-
derived normal group could be at risk of developing MCI (thus
uncovering the relevance of potential false-negative cases).

It has been highlighted in the literature that the potential impact of
false negatives has remained largely ignored (Vadillo et al., 2016),
and the overinterpretation of null results is even more dangerous
than the prevalence of false positives in some areas of research, since
null results (a) are inherently ambiguous, (b) they are silent about the
amount of support for the null hypothesis, and (c) they are surpris-
ingly easy to obtain by mere statistical artifacts (e.g., using a small
sample or a noisy measure can suffice to produce a false negative).
As Edmonds et al. (2016) state, the impact of “missed” cases of MCI
because of being wrongly discarded as healthy has a direct impact in
clinical practice, but also in research studies and clinical trials
targeting prodromal AD.

Knowing the impact that high FNR have on clinical practice, the
linear RCI seems to be underpowered for small sample sizes. Using
a logistic RCI that decreased the FNRwould be extremely helpful in
the sense that less individuals would miss opportunities for inter-
vention (in the form of cognitive rehabilitation) and they would
subsequently engage in potentially beneficial treatments from early
stages, with clinicians being more confident in the type of recom-
mendations provided to them and their families. In addition, early
interventions targeting risk factors by encouraging both physical
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Figure 1
Significance of F Test

Note. We drew 1,000 samples of sizes 10, 20, 30, 40, 50, 100, 150, 200, 250, 500, 750, and 1,000 at random
from a simulated population comprising of 1 million individuals. True parameter values are indicated in Table 2.
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and cognitive activities would reach a higher percentage of popula-
tion. Where necessary, compensatory strategies in the form of
external aids would be applied at earlier stages, as well as referrals
to other professionals for further assessment (Edmonds et al., 2016).
This positive scenario of higher accuracy in the detection of reliable
decline can be achieved if traditional reliance on linear models for
RCI estimation is overcome. Our results suggest that for typical

sample sizes used in many clinical studies (an average n < 200
individuals), a logistic model can more accurately both identify
actual clinical cases and discard healthy individuals.

Additionally, our results suggest an alternative way of improving
the accuracy of the RCI. Researchers and clinicians may be less
conservative when setting up the threshold to identify reliable
change. This yields improved TPR at the expense of a smaller
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Figure 2
True Positive and Negative Rates

Note. Reliable decline is identified when the z-score associated to the reliable change index is less than or equal to
the threshold. These results are averaged across 1,000 simulated data sets of sizes 10, 20, 30, 40, 50, 100, 150, 200,
250, 500, 750, and 1,000 drawn at random from a simulated population comprising of 1 million individuals.
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TNR. As shown in the middle panels in Figure 2, when changing the
threshold from z≤−1.64 to a more liberal one of z≤−1.28, the TPR
is above 95% for the logistic RCI even for samples as small as 10,
rising to almost 100% for samples of size 100 and larger, when
compared to a TPR of around 85% when using the more conserva-
tive threshold. This improvement is obtained at the expense of
lowering the TNR and overall accuracy from close to 100% to
around 98%. With regards to the linear RCI, lowering the
threshold to a more liberal z ≤ −1.28 rises the TPR to values higher
than 90% for samples of size 50 while maintaining the TNR above
95%. For small sample sizes, the linear model seems to be unreliable
for either threshold.
However, caution is needed when modifying the threshold used

to identify reliable decline. Lowering the threshold to −1.28 will
allow classifying more observations as showing reliable decline,
which will increase the number of true positives but also the number
of false positives. If we select even more liberal criteria, say z ≤
−1.04 (right-hand panels on Figure 2), we see that the improvement
in TPR is not that different fromwhen using z≤−1.28, however, the
TNR and overall accuracy now fall to around 95%. If it is more
important to identify those individuals who present reliable decline,
at the expense of obtaining a few more false positives, then we
recommend relaxing the lower bound to a value greater than −1.64.
We are not, however, advocating for a hard threshold of −1.28. We
are simply pointing out that if we assume that in the population, the
fifth lower percentile are representative of reliable decline, when
analyzing smaller samples, it could be a good idea to look at a higher
percentile of the samples to identify reliable change (e.g., the 10th
percentile). This would increase the TPR at a small expense of
lowering the TNR only a little. This is in line with the common use
of normative data to interpret performance on neuropsychological
tests (e.g., in MCI research), where the seventh percentile (z≤ −1.5)
is used to identify low scores. However, it is important that the cutoff
point can be defined prior to testing, rather than examining multiple
thresholds after the test results are known.
The implications of our results are that, based on the higher FNR

associated with the linear RCI, several studies with small sample
sizes seem unreliable to identify reliable decline. There is no way to
know whether the estimates reported in previous studies are false, as
it is not possible to gather the real parameters in the population, but
the results from our simulation suggesting that the probability of
having left unidentified a large proportion of individuals with
cognitive impairment is high raises concerns about their conclu-
sions. Replication studies with sample of sizes larger than 200 are
needed.
This study comprises limitations as it involves a modest approach

to detection of changes based on discrete scores of an episodic
memory test. Our results are only applicable to the Rey AVLT. It is
noteworthy to mention that the AVLT has a high resolution because
it subdivides the 0–1 interval in 16 different values. This is helpful in
terms of detecting reliable decline and also in obtaining a reasonably
good approximation using the linear regression model. Other studies
may use shorter list-learning tasks (e.g., Consortium to Establish a
Registry for Alzheimer's Disease [CERAD], Hopkins Verbal Learn-
ing Test [HVLT]), which could make detecting reliable decline
more difficult, especially when approximating the behavior of the
discrete response variable with a linear regression model.
This approach uses only one test to detect reliable decline.

Klekociuk et al. (2014) highlighted the importance of using

comprehensive test batteries to enhance sensitivity and specificity
in MCI classification by including both memory and nonmemory
assessments. In addition, Blanco-Campal et al. (2019) suggested
that it would be interesting to identify cases with a raw score below
or above the standard cut point but whose qualitative performance
may point in the opposite direction (e.g., score above the cut point
with indications of decline of clinical relevance). In any case, our
study has shown that the application of a logistic RCI can increase
the accuracy of identifying reliable decline and improve TPR and
TNR and has provided a pathway to identify the relevance of
incorporating moderate to high sample sizes in future clinical
studies. It is reasonable to assume that this same model will
show more accurate results when data from multiple sources,
both memory and nonmemory tests, are taken into consideration.

Finally, our results are based on the analysis of test–retest in two
assessment points. However, neuropsychological assessment is
typically performed multiple times in order to assess longitudinal
change. Our results prompt future research in which we explore how
the logistic RCI might outperform its linear counterpart in studies
that assess individuals at multiple time points. These would require
the accommodation of serially correlated measures, for example,
through a random-effects approach as a binomial generalized linear
mixed model. The RCI formulae would have to be adapted to
incorporate the extra correlation parameters. Additional research is
also needed to determine whether logistic models using additional
scores from multiple tests and diverse clinical samples can improve
the estimation of an accurate RCI even further.
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